Evaluating de Bruijn Graph Assemblers on 454 Transcriptomic Data
نویسندگان
چکیده
منابع مشابه
Evaluating de Bruijn Graph Assemblers on 454 Transcriptomic Data
Next generation sequencing (NGS) technologies have greatly changed the landscape of transcriptomic studies of non-model organisms. Since there is no reference genome available, de novo assembly methods play key roles in the analysis of these data sets. Because of the huge amount of data generated by NGS technologies for each run, many assemblers, e.g., ABySS, Velvet and Trinity, are developed b...
متن کاملDe Bruijn Graph Homomorphisms and Recursive De Bruijn Sequences
This paper presents a method to find new de Bruijn cycles based on ones of lesser order. This is done by mapping a de Bruijn cycle to several vertex disjoint cycles in a de Bruijn digraph of higher order and connecting these cycles into one full cycle. We characterize homomorphisms between de Bruijn digraphs of different orders that allow this construction. These maps generalize the well-known ...
متن کاملMemory Efficient De Bruijn Graph Construction
Massively parallel DNA sequencing technologies are revolutionizing genomics research. Billions of short reads generated at low costs can be assembled for reconstructing the whole genomes. Unfortunately, the large memory footprint of the existing de novo assembly algorithms makes it challenging to get the assembly done for higher eukaryotes like mammals. In this work, we investigate the memory i...
متن کاملA Self-stabilizing General De Bruijn Graph
Searching for other participants is one of the most important operations in a distributed system. We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination. Given a constant d, this paper introduces a new self-stabilizing protocol for the q-ary d-dimensional de Bruijn graph (q = d √ n) that is able to route any search...
متن کاملIDBA - A Practical Iterative de Bruijn Graph De Novo Assembler
The de Bruijn graph assembly approach breaks reads into k-mers before assembling them into contigs. The string graph approach forms contigs by connecting two reads with k or more overlapping nucleotides. Both approaches must deal with the following problems: false-positive vertices, due to erroneous reads; gap problem, due to non-uniform coverage; branching problem, due to erroneous reads and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0051188